Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical and photoelectrical properties of CuInS2-ZnIn2S4 solid solutions

Identifieur interne : 000E01 ( Main/Repository ); précédent : 000E00; suivant : 000E02

Electrical and photoelectrical properties of CuInS2-ZnIn2S4 solid solutions

Auteurs : RBID : Pascal:13-0127929

Descripteurs français

English descriptors

Abstract

We have investigated CuInS2-ZnIn2S4 solid alloys containing 4, 8, and 12 mol% ZnIn2S4. The samples with 16 mol% ZnIn2S4 were two component ones. The materials were prepared by the liquid phase deposition method, and had demonstrated n-type conductivity. Temperature dependencies of their electrical conductivity and thermally stimulated currents were investigated in the temperature region from 27 K to 300 K. Their photoconductivity spectral distributions of were analysed at T ≃ 30 K. In the crystals with 8-12 mol% of ZnIn2S4 the induced photoconductivity phenomenon was observed. It was explained on the basis of the two trapping centre model. In the low temperature region conductivity behaviour could be explained on the basis of the Variable Range Hopping model.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0127929

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical and photoelectrical properties of CuInS
<sub>2</sub>
-ZnIn
<sub>2</sub>
S
<sub>4</sub>
solid solutions</title>
<author>
<name sortKey="Bozhko, V V" uniqKey="Bozhko V">V. V. Bozhko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lutsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Novosad, A V" uniqKey="Novosad A">A. V. Novosad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lutsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davidyuk, G E" uniqKey="Davidyuk G">G. E. Davidyuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lutsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kozer, V R" uniqKey="Kozer V">V. R. Kozer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lutsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parasyuk, O V" uniqKey="Parasyuk O">O. V. Parasyuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lutsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vainorius, N" uniqKey="Vainorius N">N. Vainorius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Department and Institute of Applied Research of Vilnius University, Saule========dot;tekio al. 9/3</s1>
<s2>LT 10222, Vilnius</s2>
<s3>LTU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>LT 10222, Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Janonis, V" uniqKey="Janonis V">V. Janonis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Department and Institute of Applied Research of Vilnius University, Saule========dot;tekio al. 9/3</s1>
<s2>LT 10222, Vilnius</s2>
<s3>LTU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>LT 10222, Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakavicius, A" uniqKey="Sakavicius A">A. Sakavicius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Department and Institute of Applied Research of Vilnius University, Saule========dot;tekio al. 9/3</s1>
<s2>LT 10222, Vilnius</s2>
<s3>LTU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>LT 10222, Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kazukauskas, V" uniqKey="Kazukauskas V">V. Kazukauskas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Department and Institute of Applied Research of Vilnius University, Saule========dot;tekio al. 9/3</s1>
<s2>LT 10222, Vilnius</s2>
<s3>LTU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>LT 10222, Vilnius</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0127929</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0127929 INIST</idno>
<idno type="RBID">Pascal:13-0127929</idno>
<idno type="wicri:Area/Main/Corpus">001068</idno>
<idno type="wicri:Area/Main/Repository">000E01</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge carrier trapping</term>
<term>Copper sulfide</term>
<term>Defects</term>
<term>Electrical conductivity</term>
<term>Hopping conduction</term>
<term>Indium sulfide</term>
<term>Liquid phase deposition</term>
<term>N type conductivity</term>
<term>Photoconductivity</term>
<term>Semiconductor materials</term>
<term>Solid solutions</term>
<term>Temperature effects</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Piégeage porteur charge</term>
<term>Dépôt phase liquide</term>
<term>Conductivité type n</term>
<term>Effet température</term>
<term>Conductivité électrique</term>
<term>Photoconductivité</term>
<term>Conduction saut</term>
<term>Défaut</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Solution solide</term>
<term>Semiconducteur</term>
<term>Sulfure de zinc</term>
<term>CuInS2</term>
<term>Saut à distance variable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated CuInS
<sub>2</sub>
-ZnIn
<sub>2</sub>
S
<sub>4</sub>
solid alloys containing 4, 8, and 12 mol% ZnIn
<sub>2</sub>
S
<sub>4</sub>
. The samples with 16 mol% ZnIn
<sub>2</sub>
S
<sub>4</sub>
were two component ones. The materials were prepared by the liquid phase deposition method, and had demonstrated n-type conductivity. Temperature dependencies of their electrical conductivity and thermally stimulated currents were investigated in the temperature region from 27 K to 300 K. Their photoconductivity spectral distributions of were analysed at T ≃ 30 K. In the crystals with 8-12 mol% of ZnIn
<sub>2</sub>
S
<sub>4</sub>
the induced photoconductivity phenomenon was observed. It was explained on the basis of the two trapping centre model. In the low temperature region conductivity behaviour could be explained on the basis of the Variable Range Hopping model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>553</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical and photoelectrical properties of CuInS
<sub>2</sub>
-ZnIn
<sub>2</sub>
S
<sub>4</sub>
solid solutions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOZHKO (V. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NOVOSAD (A. V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DAVIDYUK (G. E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOZER (V. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARASYUK (O. V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAINORIUS (N.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JANONIS (V.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SAKAVICIUS (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KAZUKAUSKAS (V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Lesya Ukrainka Volyn National University, av. Voli 13</s1>
<s2>Lutsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Physics Department and Institute of Applied Research of Vilnius University, Saule========dot;tekio al. 9/3</s1>
<s2>LT 10222, Vilnius</s2>
<s3>LTU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>48-52</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000502447230080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0127929</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated CuInS
<sub>2</sub>
-ZnIn
<sub>2</sub>
S
<sub>4</sub>
solid alloys containing 4, 8, and 12 mol% ZnIn
<sub>2</sub>
S
<sub>4</sub>
. The samples with 16 mol% ZnIn
<sub>2</sub>
S
<sub>4</sub>
were two component ones. The materials were prepared by the liquid phase deposition method, and had demonstrated n-type conductivity. Temperature dependencies of their electrical conductivity and thermally stimulated currents were investigated in the temperature region from 27 K to 300 K. Their photoconductivity spectral distributions of were analysed at T ≃ 30 K. In the crystals with 8-12 mol% of ZnIn
<sub>2</sub>
S
<sub>4</sub>
the induced photoconductivity phenomenon was observed. It was explained on the basis of the two trapping centre model. In the low temperature region conductivity behaviour could be explained on the basis of the Variable Range Hopping model.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70B40</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépôt phase liquide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Liquid phase deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Conductivité type n</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>N type conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Conductividad tipo n</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Conduction saut</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Hopping conduction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Défaut</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Defects</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Solution solide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Solid solutions</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Saut à distance variable</s0>
<s4>INC</s4>
<s5>63</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0127929
   |texte=   Electrical and photoelectrical properties of CuInS2-ZnIn2S4 solid solutions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024